Question on: SS3 Mathematics - Integral Calculus (Integration)

Evaluate \(\int_{}^{}\frac{1}{x^{2}}dx\)

View related lesson
A

\(\ln x^{2} + C\)

B

\(\frac{\ln x^{2}}{2x} + C \)

C

\( \frac{1}{2x} + C\)

D

\(\frac{2}{x^{2}} + C\ \)

Ask EduPadi AI for a detailed answer
Correct Option: B

Let \(u = x^{2}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \therefore\frac{du}{dx} = 2x\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \therefore dx = \frac{du}{2x}\)

Substituting we have,

\(\int_{}^{}\frac{1}{x^{2}}\ dx = \ \int_{}^{}\frac{1}{u}.\frac{du}{2x}\ = \frac{1}{2x}\left( \ln u \right) + C\), substitute \(u\)

\[= \frac{1}{2x}\ln x^{2} + C\]

\(\therefore\int_{}^{}\frac{1}{x^{2}}dx = \frac{\ln x^{2}}{2x} + C\ \)

Add your answer

Notice: Please post responsibly.

Please share this, thanks!

No responses